On the Joint Path Length Distribution in Random Binary Trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Maximal Path Length of Binary Trees

We further refine the bounds on the path length of binary trees of a given size by considering not only the size of a binary tree, but also its height and fringe thickness (the difference between the length of a shortest root-to-leaf path and the height). We characterize the maximum path length binary trees of a given height, size, and fringe thickness. Using this characterization, we give an a...

متن کامل

On the Search Path Length of Random Binary Skip Graphs

In this paper we consider the skip graph data structure, a load balancing alternative to skip lists, designed to perform better in a distributed environment. We extend previous results of Devroye on skip lists, and prove that the maximum length of a search path in a random binary skip graph of size n is of order logn with high probability.

متن کامل

Total Path Length For Random Recursive Trees

Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud (1991) showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W . Here we give recurrence relations for the moments of Wn and of W and show that Wn converg...

متن کامل

On Random Binary Trees

A widely used class of binary trees is studied in order to provide information useful in evaluating algorithms based on this storage structure. A closed form counting formula for the number of binary trees with n nodes and height k is developed and restated as a recursion more useful computationally . A generating function for the number of nodes given height is developed and used to find the a...

متن کامل

Extremal Weighted Path Lengths in Random Binary Search Trees

We consider weighted path lengths to the extremal leaves in a random binary search tree. When linearly scaled, the weighted path length to the minimal label has Dickman’s infinitely divisible distribution as a limit. By contrast, the weighted path length to the maximal label needs to be centered and scaled to converge to a standard normal variate in distribution. The exercise shows that path le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studies in Applied Mathematics

سال: 2006

ISSN: 0022-2526,1467-9590

DOI: 10.1111/j.1467-9590.2006.00349.x